Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons

Constantine Tsonopoulos*

Exxon Research and Engineering Company, P.O. Box 101, Florham Park, New Jersey 07932

Douglas Ambrose

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England

This is part 6 of a series of contributions by the critical properties group of the IUPAC Commission I.2 on Thermodynamics, Subcommittee on Thermodynamic Data. It presents all known experimental data for the critical constants of unsaturated aliphatic hydrocarbons, which have been divided into five families: linear alk-1-enes (10 compounds, C_2 to C_{12}); other alkenes (8 compounds, C_4 to C_6); alkadienes (3 compounds, C_3 to C_6); terpenes (3 C_{10} compounds); and alkynes (3 compounds, C_2 to C_4). Recommendations are given together with uncertainties. Critical temperatures have been converted to ITS-90.

The unsaturated aliphatic hydrocarbons have been divided into five families: (a) linear alk-1-enes; (b) other alkenes; (c) alkadienes; (d) terpenes; (e) alkynes. More than one-third of the references are on ethene, commercially the most important organic chemical. Not surprisingly, the critical properties of ethene are known very accurately. On the other hand, the information on alkadienes and terpenes is very limited. The presentation and evaluation of the experimental data follow the guidelines of Ambrose *et al.* in parts 1 and 2 of this series [95-amb/you, 95-amb/tso]. The recommended values are given in Table 1, while all known data have been collected in Table 2. The references follow the format [year-first three letters of first author/first three letters of second author, and, where required, a sequence number].

Linear Alk-1-enes

Experimental critical constants are known for ten linear alk-1-enes. The work of Teja's group has extended our knowledge of the critical properties of linear alk-1-enes (α -olefins) to C₁₂, although no measurements have been made on C₁₁. The alk-1-enes are ethene (ethylene), propene (propylene), but-1-ene, pent-1-ene, hex-1-ene, hept-1-ene, oct-1-ene, non-1-ene, dec-1-ene, and dodec-1-ene. The first five linear alk-1-enes are stable at their critical point, but the heavier ones are progressively more unstable.

Ethene. Ethene (ethylene) is distinguished by having its critical properties measured first by J. D. van der Waals [1880-van]. Although the critical temperature reported by van der Waals, 9.2 °C, is essentially the same as the recommended value, 9.19 °C, it took nearly 100 years for that value to be universally accepted.

The disagreement on the critical temperature of ethene to some extent resulted from the work of Maass and collaborators in the 1930s. They postulated that liquid persists above the temperature at which the meniscus disappears. As late as 1948 [48-mas/maa] they were arguing that maximum opalescence for ethene occurs at 9.20 °C, while the critical temperature (defined from the inflection of the pV isotherm) is 9.90 °C. Today, as noted in part 1 of this series [95-amb/you], it is usual to prefer the view of Kudchadker *et al.* [68-kud/ala] that (a) the inflection point on the pV isotherm and the temperature of the disappearance of the meniscus are essentially identical, and (b) "it is preferable to determine the critical temperature visually".

Ethene also has the distinction that *two* IUPAC volumes [74-ang/arm, 88-jac/jah] have been devoted to its properties. Considerable work was done between 1974 and 1988, primarily in recognition of the commercial importance of ethene, but also owing to the fact that custody transfer takes place at conditions close to its critical point.

The most careful determination of the critical temperature of ethene was probably that of Moldover [74-mol], who used the meniscus disappearance method. For the critical density, Moldover filled four ampules to densities close to the literature value for ρ_c . He then measured the height at which the meniscus disappeared at T_c , and then by using an integrated form of the critical isotherm equation he found the density (= ρ_c) at which the meniscus would disappear exactly in the center of the ampule.

Moldover measured $t_c = (9.194 \pm 0.004)$ °C and $\rho_c = (0.2146 \pm 0.0006)$ g·cm⁻³. In addition, he interpolated the then unpublished *pVT* data of Hastings and Levelt Sengers [77-has/lev, 80-has/lev] to determine the value of the critical pressure as $\rho_c = (5.039 \pm 0.010)$ MPa.

Hastings and Levelt Sengers later commented [80-has/ lev] that their earlier results used by Moldover were found to be slightly in error.

The 1988 IUPAC volume [88-jac/jah] accepted Moldover's t_c and redetermined p_c and ρ_c from the pVT data of Douslin and Harrison [76-dou/har] and Hastings and Levelt Sengers [80-has/lev]. In addition, Jacobsen *et al.* [88-jac/jah] reported the values used in their critical-region equation and in the main equation of state. The latter values (see Table 2), which correspond to the inflection point on the critical pV isotherm, are outside of the error limits Jacobsen *et al.* set for the selected values. Our recommendations are consistent with these selected values, but are slightly rounded off and have larger uncertainties: $T_c = (282.34 \pm 10^{-1} \text{ m}^2)$

S0021-9568(95)00199-3 CCC: \$12.00 © 1996 American Chemical Society

	molar mass			(a. a.a.				$V_{\rm c}$	
	$M/g \cdot mol^{-1} a$	$T_{\rm c}/K^{\rm D}$	(±)	<i>p</i> _c /MPa	(±)	$ ho_{\rm c}/{\rm g}\cdot{\rm cm}^{-3}$	(±)	cm ³ ·mol ⁻¹	Z_{c}^{c}
ethene	28.053 76	282.34	(0.02)	5.041	(0.004)	0.214	(0.002)	131.1	0.2815
propene	42.080 64	364.9	(0.4)	4.60	(0.03)	0.228	(0.005)	184.6	0.2798
but-1-ene	56.107 52	419.5	(0.5)	4.02	(0.05)	0.233	(0.012)	240.8	0.2775
pent-1-ene	70.134 4	464.8	(0.5)	3.56	(0.05)	0.235	(0.005)	298.4	0.275
hex-1-ene	84.161 28	504.0	(0.3)	3.21	(0.03)	0.237	(0.005)	355.1	0.272
hept-1-ene	98.188 16	537.3	(0.4)	2.92	(0.04)	0.24	(0.01)	409	0.267
oct-1-ene	112.215 04	567.0	(0.8)	2.68	(0.08)	0.24	(0.01)	468	0.266
non-1-ene	126.241 92	594.0	(1.0)			0.24	(0.01)	526	
dec-1-ene	140.268 8	617	(2)	2.22	(0.10)	0.24	(0.01)	584	0.253
dodec-1-ene	168.322 56	658	(2)	1.93	(0.20)				
(<i>Z</i>)-but-2-ene	56.107 52	435.5	(0.1)	4.21	(0.05)	0.240	(0.010)	233.8	0.272
(<i>E</i>)-but-2-ene	56.107 52	428.6	(0.1)	4.10	(0.02)	0.236	(0.005)	237.7	0.2735
2-methylpropene	56.107 52	417.9	(0.1)	4.000	(0.010)	0.235	(0.004)	238.8	0.2749
(Z)-pent-2-ene	70.134 4	475	(1)	3.69	(0.10)				
3-methylbut-1-ene	70.134 4	452.7	(0.3)	3.53	(0.03)	0.230	(0.010)	304.9	0.286
2-methylbut-2-ene	70.134 4	470	(1)	3.42	(0.10)				
cyclopentene	68.118 52	506.5	(0.5)	4.80	(0.05)	0.278	(0.010)	245	0.279
cyclohexene	82.145 4	560.4	(0.1)						
propadiene	40.064 76	394	(?)	5.25	(?)				
buta-1,3-diene	54.091 64	425	(1)	4.32	(0.10)	0.245	(0.010)	221	0.270
hexa-1,5-diene	82.145 4	508	(?)						
)-(<i>R</i>)- <i>p</i> -mentha-1,8-diene	136.237 04	653	(2)			0.29	(0.01)	470	
)-(1 <i>S</i>)-pin-2-ene	136.237 04	644	(2)			0.30	(0.01)	454	
)-car-3-ene	136.237 04	658	(2)			0.28	(0.01)	487	
ethyne	26.037 88	308.3	(0.1)	6.138	(0.010)	0.232	(0.004)	112.2	0.2687
propyne	40.064 76	402.4	(0.2)	5.63	(0.02)	0.245	(0.005)	163.5	0.275
but-1-yne	54.091 64	440	(2)	4.60	(0.20)	0.26	(0.03)	208	0.262

Molar masses based on carbon = 12.011, hydrogen = 1.00794. ^{*b*} Temperatures are expressed in ITS-90. ^{*c*} $Z_c = p_c V_c/RT_c$ where R = 8.31451 J·mol⁻¹·K⁻¹.

0.02) K, p_{c} = (5.041 \pm 0.004) MPa, and ρ_{c} = (0.214 \pm 0.002) cm^{-3}.

Propene. Next to ethene, propene (propylene) is the most important alkene in commerce. However, the number of investigations of the critical constants of propene is only a small fraction of the investigations on ethene. Furthermore, the critical constants of propene are subject to considerable uncertainty.

Angus *et al.*, in the IUPAC monograph on propene [80ang/arm], examined six investigations [15-sei/bur, 21-maa/ wri, 33-win/maa, 40-vau/gra, 41-lu/new, 49-mar/pre] and concluded that "It is not possible to have complete confidence in any of them". Angus *et al.* suggest that " T_c probably lies in the region (365.15 ± 0.5) K, p_c lies between (4.5 and 5) MPa, and ρ_c is not known". Because of these uncertainties, Angus *et al.* did not constrain their *pVT* equation to go through a certain critical point, but instead determined the following critical constants by satisfying the critical point criteria, $(\partial p/\partial \rho)_T = 0$ and $(\partial^2 p/\partial \rho^2)_T = 0$:

365.57 K, $p_c = 4.6646$ MPa, and $\rho_c = 0.005$ 31 mol·cm⁻³ (0.223 g·cm⁻³). Angus added that their value for T_c may be as much as 0.5 K too high, but still used their values "for the sake of thermodynamic consistency".

Brunner's [88-bru] careful visual observation, the *pVT* measurements of Ohgaki *et al.* [90-ohg/ume], and the very recent results of Wilson *et al.* [95-wil/wil] have confirmed Angus's supposition that their T_c recommendation [80-ang/arm] is too high. Ohgaki *et al.* made their measurements in the critical region (0.996 < T_r < 1.004; 0.6 < ρ_r < 1.4) and converted them to critical properties with the power law for the vapor–liquid coexistence curve and the $p-\rho$ relation on the critical isotherm (see 96-amb/you for a correction to part 1 of this series). Considering all the experimental measurements that are listed in Table 2, we recommend the following critical constants for propene: $T_c = (364.9 \pm 0.4)$ K, $p_c = (4.60 \pm 0.03)$ MPa, and $\rho_c = (0.228 \pm 0.005)$ g·cm⁻³. Although the uncertainties for T_c and p_c are larger than is desirable for a substance as important

as propene, they are not large enough to include the 1980 IUPAC recommendations [80-ang/arm].

 C_4 to C_6 Alk-1-enes. Apparently, no experimental investigation has been made on but-1-ene since 1950. Fortunately, this 45-year old investigation was made by Beattie's group [50-bea/mar], and thus the slightly rounded-off 1950 results can be recommended with confidence.

More recent data have been reported for pent-1-ene and some of the higher alk-1-enes by the groups of Ambrose (C_5 to C_8), Kay (C_5 and C_6), Ma (C_5 and C_6), and Teja (C_5 to C_{10} , C_{12}). In the case of pent-1-ene, there is excellent agreement in the T_c between Ambrose [60-amb/cox] and Teja [91-gud/ros]. In view of this agreement, it appears that a 1972 result from Kay's group [72-mou/kay] is 1 K too low, while a more recent Chinese investigation [91-ma/ ma] is 1 K too high. For p_c we recommend the value of Wolfe *et al.* [83-wol/kay], while for ρ_c we averaged the results of Wolfe *et al.*, Ma *et al.* [91-ma/ma], and Gude *et al.* [91-gud/ros].

The modern measurements for hex-1-ene are in good agreement for T_c and p_c , but there is a significant difference for ρ_c , for which we recommend the average of the two available data [91-gud/ros, 91-ma/ma].

 C_7 to C_{12} Alk-1-enes. The C_7 and higher alkenes are thermally unstable at their critical points, and this instability increases as the carbon number increases. It is for such unstable compounds that Ambrose had to use a rapid heater in order to reduce the effect of thermal decomposition, while Teja's group developed their special methods [see 95-amb/you and 95-amb/tso].

For hept-1-ene, there is very good agreement in the T_c results of Ambrose *et al.* [60-amb/cox] and Gude *et al.* [91-gud/ros], but we only have Gude's results for p_c and ρ_c . In the latter case, the value of Gude *et al.* was rounded down, in accord with our comment in Table 2 that their results for pent-1-ene and hex-1-ene may be too high; see also 93-ste/chi.

	values reported in					
year	nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho/g\cdot cm^{-3}$	method ^a	authors
	ETH	ENE (Ethylene): mola	ar mass = 28.05376	g; CASRN = 74-85-1	-	
	$T_{ee} - T_{ee}$	$h = -0.004 \text{ K}$: $T_{00} - T_{e}$	$a = -0.002 \text{ K}$: $T_{00} -$	$T_{48} = -0.006$ K at 28	82 K	
1880-van	92°C 58 atm	282.4	5 88	140 01000 11 40 40	1	van der Waals
1882-sar	$1.5 ^{\circ}\text{C}$ 43.5 atm	274 5	4 41	0 186	8	Sarrau
1002-341	0.006 739 Amagat	211.0	1.11	0.100	0	Sarrau
1009		990			1	Caillatat
1004		280	F 17		1	Calletet
1884-dew	10.1 °C, 51.0 atm	283.2	5.17	0.04	1	Dewar
1886-cai/mat	12.5 °C	285.6	~ ~	0.21	1, /	Calletet and Mathias
1895-0IS	10 °C, 51.7 atm	283	5.24		1, 5	Olszewski
1897-vil	10 °C	283			1	Villard
12-car/arn	(9.50 ± 0.10) °C, (50.65 ± 0.10) atm	282.6	5.132		1a	Cardoso and Arni
21-maa/wri	$(9.9 \pm 0.2) \ ^{\circ}\text{C}$	283.0			1	Maass and Wright
27-mat/cro, 29-mat/cro		(282.6)		0.21597	7	Mathias <i>et al</i> .
20-hri	9.0°C 52.0 atm	282.2	5 27		3	Britton
27-maa/god	(9.50 ± 0.01) °C	282.64	5.064	0.2374 ± 0.0067	17	Maass and Coddes
	(49.98 ± 0.01) c, (49.98 ± 0.01) atm	000.04	0.001	0.2011 ± 0.0001	1, 7	Malassana and Masar
38-mci/maa	9.50 °C	282.64	5 117	0.007	1	Meintosh and Maass
39-dac/mci,	(9.90 ± 0.01) °C,	283.04	5.117	0.227	3	Dacey et al.,
39-mci/dac	(50.50 ± 0.01) atm, 4.40 cm ³ ·g ⁻¹					McIntosh <i>et al</i> .
40-nal/maa	(9.21 ± 0.015) °C	282.35			1a	Naldrett and Maass
48-kay	48.65 °F, 735.6 psi	282.39	5.072		1a	Kay
53-whi/mas	(9.26 ± 0.01) °C	282.40		0.2095 ± 0.0004	1a, 3	Whiteway and Mason
58-row/sut	9.4 °C, 49.84 atm	282.54	5.050		1a	Rowlinson et al.
64-shi/koh	9.54 °C, 50.53 atm	282.68	5.120		1	Shim and Kohn
71-vas	4.69 cm ³ ⋅g ⁻¹	283.05	5.100	0.213	5, 7, 10	Vashchenko <i>et al</i> .
71-zer/kog	123.6 cm ³ ·mol ⁻¹	282.318	4.96	0.2270	1a	Zernov <i>et al</i> .
74-ang/arm		282.65 ± 0.25	5.076 ± 0.02	0.218 ± 0.002	7, 10	Angus <i>et al</i> .
74-mol	(9.194 ± 0.004) °C	282.342		0.2146 ± 0.0006	1	Moldover
75-ben		282.648	5.075	0.215	8	Bender
76-dou/har	7.635 mol·dm ⁻³	282.35	5.0420	0.2142	3	Douslin and Harrison
76-tra/was	(9.30 ± 0.05) °C.	282.45	010 120	0.2152 ± 0.0013	3	Trappeniers <i>et al.</i>
ro da nas	(170.6 ± 1.0) Amagat	+			U	riapponioro et all
77-000	$7.6 \text{ mol} \cdot dm^{-3}$	282 35	5 04234	0.21	2	Goodwin
77-bas/lov	(0.134 ± 0.043) °C	282.33	5.0326 ± 0.0048	0.21	2	Hastings and
77-11as/16v	(3.134 ± 0.043) C	202.202	5.0550 ± 0.0040		5	Levelt-Sengers
80-has/lev	$(7.6340 \pm 0.0009) \\ mol \cdot dm^{-3}$	282.3432 ± 0.0017	5.0403 ± 0.0002	0.21416 ± 0.00003	3, 8	Hastings <i>et al.</i>
80-tho/zan	(9.22 ± 0.02) °C	282.368			1	Thomas and Zander
81-mcc/jac	$7.6340 \text{ mol} \cdot \text{dm}^{-3}$	282.341	5.0403	0.21416	8	McCarty and Jacobsen
81-svc/vas		282.348 ± 0.05	5.042 ± 0.002	0.2142 ± 0.0005	8	Sychev <i>et al</i>
82-vou	7 650 mol·dm ⁻³	282.010 ± 0.000	5.0404	0.2142 ± 0.0000	8	Younglove
83-neh/hal	(7.635 ± 0.006)	282.348 ± 0.0105	5.04197 ± 0.0026	0.2140	8	Nehzat <i>et al</i>
	$mol \cdot dm^{-3}$		5.04137 ± 0.0020	0.2142	0	
84-jah, 86-jah/jac	$7.634 \text{ mol} \cdot \text{dm}^{-3}$	282.343	5.0401	0.2142	8	Jahangiri, Jahangiri <i>et al</i> .
85-bru		282.33 ± 0.1	5.055 ± 0.005		2a	Brunner
86-van/jac	see notes				7	Van Poolen <i>et al</i> .
88-jac/jah	selected values	282.342 ± 0.004	5.0408 ± 0.0008	0.2142 ± 0.0004	8	Jacobsen <i>et al</i> .
5 5	critical region EOS	282.343	5.0403	0.2142		
	main EOS (7.689 14 mol·dm ⁻³)	282.318	5.0373	0.215709		
	recommended values	282.34 ± 0.02	5.041 ± 0.004	$\textbf{0.214} \pm \textbf{0.002}$		

Table 2. Critical Properties from the Literature

Sarrau [1882-sar] determined the critical constants by fitting Amagat's *pVT* data with the equation of state of Clausius. Since he assumed that the absolute temperature is $273.00 + t^{\circ}$ °C, Sarrau's *T*_c should be 274.5 K (and *t*_c = 1.35 °C). Kobe and Lynn [53-kob/lyn] report the critical density incorrectly as 0.148 g·cm⁻³.

Dewar [1884-dew] notes that the data for ethylene are not new, but Dewar's values could not be found in an 1884 or earlier paper. Cailletet and Mathias [1886-cai/mat] report 12 °C and 0.22 g·cm⁻³ in the text, but the values interpolated from their graph are 12.5 °C and 0.21 g·cm⁻³.

Mathias *et al.* [27-, 29-mat/cro] determined ρ_c at the t_c of Maass and Wright [21-maa/wri]; at 9.19 °C, ρ_c would have been 0.216 16 g·cm⁻³.

Whiteway and Mason [53-whi/mas] used a vertical Pyrex bomb whose contents were vigorously stirred. However, no stirring was used in determining ρ_c .

F. Din (*Thermodynamic Functions of Gases*, Vol. 2, Butterworths, London, 1962) selected the T_c and ρ_c of Maass and Geddes [37-maa/ged] and the ρ_c of Mathias *et al.* [29-mat/cro] extrapolated to 9.5 °C.

Vashchenko *et al.* [71-vas] took T_c from the literature and determined p_c by graphically extrapolating their vapor pressure data; ρ_c by extrapolating the rectilinear diameter.

Angus *et al.* [74-ang/arm] took T_c and p_c from the literature (after some analysis) and determined ρ_c by extrapolating the rectilinear diameter of Mathias *et al.* [27-mat/cro].

Bender [75-ben] selected the critical data and constrained his equation of state to these values and the criticality conditions.

Table 2 (continued)

Sychev *et al.* [81-syc/vas] may have selected the critical constants from the literature and constrained their equation of state to these values and the criticality conditions. The p_c and ρ_c uncertainties are those on p 37; different values are given on p 113. Nehzat *et al.* [83-neh/hal] correlated the data of Douslin and Harrison [76-dou/har] and adopted their values, but provided estimates for the uncertainties (on p 205).

The T_c and p_c values in 85-bru are also reported by E. Brunner (*J. Chem. Thermodyn.* **1987**, *19*, 823–835; **1988**, *20*, 1397–1409). Van Poolen *et al.* [86-van/jac] determined ρ_c at the T_c of Jahangiri *et al.* [86-jah/jac] by straight rectilinear diameter (7.624 mol·dm⁻³ or 0.2139 g·cm⁻³), by rectilinear diameter with a "hook" (7.639 or 0.2143), and by the critical liquid mole fraction (7.633 or 0.2141).

	values reported in					
year	nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho/{ m g}{ m \cdot cm^{-3}}$	method ^a	authors
	PROPEN	E (Propylene): m	olar mass 42.080 6	4 g; CASRN 115-	07-1	
	$T_{68} - T_{48} = -$	$0.002 \text{ K}; T_{90} - T_{68}$	$_{3} = -0.024$ K; T_{90} -	$-T_{48} = -0.026 \text{ K}$	at 365 K	
1882-nad	90 °C	363			1	Nadezhdin
1883-nad	91.6 °C	364.8			1	Nadezhdin
15-sei/bur	92.6 °C, 34 463 mmHg	365.8	4.5947		1	Seibert and Burrell
21-maa/wri	(92.1 ± 0.2) °C	365.2			1	Maass and Wright
33-win/maa	92	365		0.225	1, 7	Winkler and Maass
40-gil/sch	203 °F, 675 psi	368	4.654		1(?)	Gilliland and Scheeline
40-sou	91.9 °C, 44.6 atm, 179.7 cm ³ ⋅mol ⁻¹	365.0	4.519	0.234	10	Souders
40-vau/gra	91.4 °C, 45.4 atm, 180 cm ³ ·mol ^{−1}	364.6	4.600	0.233	1, 3, 7	Vaughan and Graves
41-lu/new	92.1 °C, 45.4 atm	365.2	4.600		1	Lu <i>et al</i> .
43-cra		(364.6)		0.2277	7	Cragoe
49-far/sag	197.0 °F, 668 psi, 0.06944 ft ^{3.} lb ⁻¹	364.8	4.606	0.2307	5, 7, 10	Farrington and Sage
49-mar/pre	$\begin{array}{l} (91.76\pm 0.015)\ ^{\circ}\text{C},\\ (45.61\pm 0.02)\ \text{atm},\\ (0.191\pm 1\%)\ \text{L}\cdot\text{mol}^{-1} \end{array}$	364.88	4.6214	0.220	3	Marchman <i>et al</i> .
55-kre	92.05 °C	365.17			1	Kreglewski
71-vas	$4.34 \text{ cm}^{3} \cdot \text{g}^{-1}$	365.03	4.64	0.230	5, 7, 10	Vashchenko <i>et al.</i>
75-ben	-	364.88	4.613	0.227	8	Bender
78-juz/sif		364.96	4.60	0.230	5, 8	Juza <i>et al</i> .
80-ang/arm	0.005 31 mol⋅cm ⁻³	365.55	4.6646	0.223	8	Angus <i>et al</i> .
88-bru		364.83 ± 0.2	4.600 ± 0.02		2a	Brunner
90-ohg/ume	0.005 55 mol⋅cm ⁻³	364.57	4.579	0.2335	3	Ohgaki <i>et al.</i>
95-wil/wil		365.16 ± 0.05	4.594 ± 0.005		2c	Wilson et al.
	recommended values	$\textbf{364.9} \pm \textbf{0.4}$	$\textbf{4.60} \pm \textbf{0.03}$	$\textbf{0.228} \pm \textbf{0.005}$		

Nadehzdin reported the t_c as 90 °C in 1882-nad and 91.6 °C in 1883-nad, which is the average of two values reported earlier in the paper: 90.2 °C and 93 °C. The German summary [1883-nad-1] gives the value 97 °C, but no such value could be found in the original papers.

Winkler and Maass [33-win/maa] measured the saturated vapor and liquid densities up to 91.6 °C. Critical temperature and density were estimated from their Figure 1.

Souders [40-sou] is quoted in 40-vau/gra as having "critically chosen" the critical constants.

Cragoe [43-cra] determined ρ_c at the T_c (and p_c) of Vaughan and Graves [40-vau/gra].

Farrington and Sage [49-far/sag] determined their t_c from a review of available data and p_c by extrapolating their vapor pressure data from 190 °F to t_c .

Vashchenko *et al.* [71-vas] took T_c from the literature and determined p_c by graphically extrapolating their vapor pressure data and ρ_c by extrapolating the rectilinear diameter.

Bender [75-ben] selected the critical data and constrained his equation of state to these values and the criticality conditions. Juza *et al.* [78-juz/sif] claim that their equation of state is valid from 180 K to 460 K, but also report a T_c and ρ_c ; their vapor pressure equation was extrapolated from 360 K to T_c .

The T_c of Ohgaki *et al.* [90-ohg/ume] is presumed to be consistent with the IPTS-68 scale.

Wilson *et al.* [95-wil/wil] made their measurements with both a static and a flow method that employed a visual cell. "There was no statistical difference between the values measured" by the two methods.

year	values reported in nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho_{ m c}/{ m g}{ m \cdot}{ m cm}^{-3}$	method ^a	authors			
BUT-1-ENE: molar mass 56.107 52 g; CASRN 106-98-9									
	$T_{68} - T_{48} = 0.0019$ K; $T_{90} - T_{68} = -0.035$ K; $T_{90} - T_{48} = -0.016$ K at 420 K								
28-cof/maa	144 °C	417			1	Coffin and Maass			
43-cra	39.2 atm	(417)	3.97	0.2354	6, 7	Cragoe			
46-old/sag	297 °F, 588 psi, 3.85 ft ³ ·lbmol ⁻¹	420	4.05	0.2334	3	Olds et al.			
50-bea/mar	(146.4 ± 0.3) °C, (39.7 ± 0.3) atm, $(4.15 \pm 5\%)$ mol·L ⁻¹	419.53	4.023	0.233	3	Beattie and Marple			
	recommended values	419.5 ± 0.5	4.02 ± 0.05	$\textbf{0.233} \pm \textbf{0.012}$					

Cragoe [43-cra] determined the ρ_c at the T_c of Coffin and Maass [28-cof/maa]. He also estimated p_c by extrapolating available vapor pressure data.

Beattie and Marple [50-bea/mar] reported the uncertainty in T_c as 0.3 °C on pp 1450 and 1452, but as 0.03 °C on p 1451 (caption for Figure 2).

Table 2 (continued)

year	values reported in nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	method ^a	authors			
	PENT-1-ENE: molar mass 70.1344 g; CASRN 109-67-1								
	$T_{68} - T_{48} = 0.039 \text{ K}; \ T_{90} - T_{68} = -0.040 \text{ K}; \ T_{90} - T_{48} = -0.001 \text{ K}$ at 465 K								
1883-paw	201.0 °C	474.2			1	Pawlewski			
1893-alt	208.0 °C	481.2			1	Altschul			
1895-pic	201.2 °C	474.4			1	Pictet			
1895-pic/alt	201.0 °C	474.2			1	Pictet and Altschul			
03-ves	202.6 °C, 40.4 atm	475.8	4.094		1	Vespignani			
48-day/nic	201 °C, 30 700 mmHg	474	4.093		3, 5	Day et al.			
60-amb/cox	(191.59 ± 0.03) °C	464.74			1	Ambrose et al.			
72-mou/kay	515.03 psi	463.73	3.551		1a	Mousa <i>et al</i> .			
83-wol/kay		465.1	3.55	0.233	1a, 7	Wolfe <i>et al</i> .			
91-gud/ros		464.7 ± 0.3		0.239 ± 0.005	1c	Gude et al.			
91-ma/ma	$(192.59 \pm 0.17)~^{\circ}\mathrm{C}$	465.70	3.592 ± 0.026	0.2334 ± 0.0009	1, 7	Ma <i>et al</i> .			
	recommended values	$\textbf{464.8} \pm \textbf{0.5}$	$\textbf{3.56} \pm \textbf{0.05}$	0.235 ± 0.005					

Pawlewski [1883-paw] measured the t_c of "amylene"; however, he also reported the $t_b = 38$ °C, which is close to that of 2-methylbut-2-ene (38.55 °C).

Altschul [1893-alt] also measured the *t*_c of "amylene"; see previous note.

Pictet *et al.* [1895-pic, 1895-pic/alt] reported the t_c of "pental", which may be 2-methyl-2-butene. However, the compound is given as pent-1-ene in 23-lan/boe and 53-kob/lyn.

Vespignani [03-ves] identified his sample as "amilene-n"; however, he reported a t_b (37.5 °C at 761.5 mmHg) that is close to that of 2-methylbut-2-ene or of the two but-2-enes, (36 to 37) °C. On the other hand, the reported density (0.6360 g·cm⁻³ at 21/4 °C) is closer to that of pent-1-ene.

Day *et al.* [48-day/nic] mention that t_c is in the neighborhood of 201 °C and add that the critical region will be considered in a future paper, but such a paper could not be located. They measured the vapor pressure up to 200 °C. We calculated p_c with their equation for the (170 to 200) °C range. (The 10⁻³ in the last term of the equation should be 10⁻⁹.) *et al.* [91-ma/ma] report 192.59 °C in Tables 4 and 8, but 192.42 °C in Table 9.

year	values reported in nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	method ^a	authors
	$T_{68} - T_{48} = 0.055$ K; $T_{68} = 0.055$	$T_{60} - T_{68} = -0.0$	040 K; $T_{90} - T_{48} =$	0.015 K at 504 K		
1893-alt	243.5 °C (?)	516.6			1	Altschul
60-amb/cox	$(230.83 \pm 0.03)~^{\circ}\mathrm{C}$	504.00			1	Ambrose et al.
74-kay/you		503.2 ± 0.1	3.212 ± 0.002		1a	Kay and Young
91-gud/ros		504.2	3.206 ± 0.02	0.242 ± 0.005	1c	Gude et al.
91-ma/ma	$(230.57 \pm 0.25)~^{\circ}\mathrm{C}$	503.68	3.200 ± 0.030	0.2320 ± 0.0009	1, 7	Ma <i>et al</i> .
94-gud/tej	gas furnace	504.2 ± 0.2		0.241 ± 0.005	1c	Gude and Teja
	platinum furnace	504.0 ± 0.3		0.242 ± 0.03		
	flow method	$\textbf{504.8} \pm \textbf{0.8}$	3.206 ± 0.02			
	recommended values	504.0 ± 0.3	$\textbf{3.21} \pm \textbf{0.03}$	$\textbf{0.237} \pm \textbf{0.005}$		

Altschul [1893-alt] reported the t_c of "hexylene" with a question mark; he noted that the liquid became brown and the temperature started increasing.

Kay and Young [74-kay/you] reported the unpublished data of W. B. Kay and S. Pak, API "Critical Properties of Hydrocarbon Mixtures", Progress Report No. 5, 1970–71.

Gude *et al.* [91-gud/ros] measured (504.0 \pm 0.3) K with the sealed ampule method and (504.8 \pm 0.8) K with the flow method. In 94-gud/tej, "gas furnace" and "platinum furnace" refer to the static (sealed ampule) method.

year	values reported in nonstandard units	$T_{90}/{ m K}$	<i>p</i> /MPa	$ ho/{ m g}{ m \cdot cm^{-3}}$	method ^a	authors
	HEPT-1-ENE: n	nolar mass 98.1	88 16 g; CASRN	592-76-7		
	$T_{68} - T_{48} = 0.064$ K; T_{90}	$-T_{68} = -0.040$	$0 \text{ K}; T_{90} - T_{48} = 0$).024 K at 537 K		
60-amb/cox	$(264.08 \pm 0.05)~^{\circ}\mathrm{C}$	537.25			1c	Ambrose et al.
91-gud/ros		537.4	2.921 ± 0.02	0.244 ± 0.005	1c	Gude et al.
	recommended values	537.3 ± 0.4	$\textbf{2.92} \pm \textbf{0.04}$	$\textbf{0.24} \pm \textbf{0.01}$		

Ambrose *et al.* [60-amb/cox] measured T_c in a rapid heater; the rate of change of the apparent T_c was +0.5 K·h⁻¹. Gude *et al.* [91-gud/ros] measured (537.4 ± 0.3) K with the sealed ampule method and (537.6 ± 0.8) K with the flow method; 537.4 K is their recommendation. Because their ρ_c values for pent-1-ene and hex-1-ene were higher than other literature values, their results for C₇+ (which are unstable at the critical point) have been adjusted to lower values with one less significant figure.

year	values reported in nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho/{ m g}{ m \cdot cm^{-3}}$	method ^a	authors
	OCT-1-ENE: mo	olar mass 112.2	15 04 g; CASRN	111-66-0		
1883-paw	298.6 °C	571.8	Ū.		1	Pawlewski
1893-alt	304.8 °C	578.0			1	Altschul
60-amb/cox	$(293.4 \pm 0.1) \ ^{\circ}\text{C}$	566.6			1c	Ambrose et al.
90-smi/neg		569.8 ± 1		0.270	1c	Smith et al.
91-gud/ros		567.4	2.675 ± 0.02	0.242 ± 0.005	1c	Gude et al.
	recommended values	567.0 ± 0.8	$\textbf{2.68} \pm \textbf{0.08}$	$\textbf{0.24} \pm \textbf{0.01}$		

Table 2 (continued)

Ambrose *et al.* [60-amb/cox] measured T_c in a rapid heater; the rate of change of the apparent T_c was +3.0 K·h⁻¹. Smith *et al.* [90-smi/neg] noted that their T_c was the first point observed, and therefore the accuracy would not be better than ± 1 K. Their ρ_c is clearly an approximate value. Gude *et al.* [91-gud/ros] measured (567.3 ± 0.3) K with the sealed ampule method and (567.8 ± 0.8) K with the flow method;

567.4 K is their recommendation. See also note for Gude et al. under hept-1-ene.

year	value	s reported in nonstandard ur	nits T _s	₀ /K	<i>p</i> /MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	m	ethod ^a	authors
01		NON-1-ENE	molar mass	126.241 92	g; CASRN	124-11-8	05	1.	Carle et al
91-gud/ros			593.7	± 0.3		0.241 ± 0.01	05	IC	Gude <i>et al</i> .
		recommended values	594.0	0 ± 1.0		0.24 ± 0.01			
Gude a	<i>et al</i> . [91-g	ud/ros] measured <i>T</i> _c only wit	h the sealed a	mpule met	thod. See a	also note for G	ude <i>et al</i> .	under l	hept-1-ene.
year	values r	reported in nonstandard unit	s T ₉₀ /K	ŀ	ø/MPa	$ ho/{ m g}{ m \cdot}{ m cm}^{-3}$	met	hod ^a	authors
		DEC-1-ENE	2: molar mass	140.2688	g; CASRN	872-05-9			
91-gud/ros		<u>_</u>	616.4	2.21	18 ± 0.02	0.240 ± 0.00	05 1	1 C	Gude <i>et al.</i>
94-gud/tej		gas furnace	$61/.2 \pm$	1.1		0.239 ± 0.00	J5]	L C	Gude and Teja
		flow mothed	$616.9 \pm 616.0 \pm 100$	1.2 Ng 221	18 ± 0.02	0.240 ± 0.00	03		
		recommended values	617 ± 2	2.0	P + 0.10	0.24 ± 0.01			
			011 ± %	2.25	. ± 0.10	0.01 ± 0.01			
Gude <i>et al</i> . [91-gud/ros	s] measured (616.9 \pm 1.2) K y	with the seale	d ampule n	nethod and	$1~(616.0\pm0.8)$	K with the	e flow r	nethod; 616.4 K
is their re In 94-gud/te	commend j, "gas fur	ation. See also note for Gude nace" and "platinum furnace"	e <i>et al.</i> under l " refer to the s	nept-1-ene. static (seale	ed ampule)	method.			
year	values	s reported in nonstandard un	its T_9	₀ /K	<i>p</i> /MPa	ρ/g•cm	n ⁻³ m	ethod ^a	authors
		DODEC-1-EN	E: molar mas	s 168.322 5	66 g; CASR	N 112-41-4		-	
91-gud/ros			657.6	± 0.9	1.930 ± 0	.02		1c	Gude <i>et al</i> .
		recommended values	658 ±	- 2	1.93 ± 0.2	20			
		Gude et al. [91-g	gud/ros] measu	ured T _c only	y with the	flow method.			
year	values r	reported in nonstandard unit	s <i>T</i> ₉₀ /K	P	/MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	metho)d ^a	authors
		(Z)-BUT-2-ENE (cis-E	But-2-ene): m	olar mass 5	6.107 52 g	; CASRN 590-1	18-1		
		$T_{68} - T_{48} = 0.026$ K;	$T_{90} - T_{68} = -6$	0.037 K; <i>T</i> ₉	$T_{00} - T_{48} = -$	-0.011 K at 43	6 K		
28-cof/maa		155 °C	428				1	(Coffin and Maass
43-cra		(320 °F), 41.5 atm	(433)	4.20	05	0.2398	6, 7,	9 (Cragoe
60-amb/cox		(162.40 ± 0.02) °C	435.54	0.1 4.0	1 0 05	0.040 + 0.010		1	Ambrose <i>et al</i> .
		recommended values	435.5 \pm	0.1 4.2	1 ± 0.05	0.240 ± 0.010)		
	Coffin an Cragoe [4	d Maass [28-cof/maa] prepar [3-cra] estimated t_c and then	ed a β -butyler determined p	ne sample, _c by extrap	a mixture o olating lite	of (<i>Z</i>)- and (<i>E</i>)- rature vapor-p	but-2-ene pressure d	s; see te ata.	ext.
year	values r	eported in nonstandard unit	s T ₉₀ /K	Ľ	/MPa	$\rho/g \cdot cm^{-3}$	metho	d ^a	authors
		(E)-BUT-2-ENE (trans	But-2-ene): n	nolar mass	56.107 52	g; CASRN 624	-64-6		
		$T_{68} - T_{48} = 0.024$ K;	$T_{90} - T_{68} = -6$	0.037 K; <i>T</i> g	$T_{48} = -$	–0.013 K at 42	9 K		
28-cof/maa		155 °C	428	, ,			1	(Coffin and Maass
43-cra		(311 °F), 40.5 atm	(428)	4.10	04	0.2359	6, 7,	9 (Cragoe
60-amb/cox		(155.46 ± 0.02) °C	428.60				1	1	Ambrose <i>et al</i> .
		recommended values	428.6 \pm	0.1 4.10	0 ± 0.02	0.236 ± 0.005	5		
	Coffin an	d Maass [28-cof/maa] prepar	ed a β -butyler	e sample.	a mixture (of (Z)- and (E)-	but-2-ene	s: see t	ext.
	Cragoe [4	[3-cra] estimated t_c and then	determined p	_c by extrap	olating lite	erature vapor p	pressure d	ata.	
		values reported in							
year		nonstandard units	T_{90}/K	<i>p</i> /MPa	a ρ/	g∙cm ⁻³ me	thod ^a		authors
		2-METHYLPROPENE (Isobutylene):	molar mas	s 56.107 5	2 g; CASRN 11	5-11-7		
		$T_{68} - T_{48} = 0.018$ K;	$T_{90} - T_{68} = -6$	0.034 K; <i>T</i> g	$T_{48} = -$	-0.016 K at 41	8 K		
1883-nad, -na	d-1	150.7 °C	423.8				1 Na	idezhd	in, Nadejdine (sic)
27-cof/maa, 28	8-cof/maa	143.5 °C	416.6				1 Co	ffin an	d Maass
39-sch/gil		(300 ± 2) °F, (583 ± 4) psi (144.72 ± 0.05) °C	422	4.02	0.00	4 + 0.009	1 Sc	heeline	e and Gilliland
42-bea/ing		(144.73 ± 0.05) °C, (39.48 ± 0.05) stm	417.86	4.000	0.23	4 ± 0.002	з Be	attie e	t al.
42-ben		(144.6 ± 0.6) °C,	417.8	4.002			1 Be	enedict	
40		(39.5 \pm 0.2) atm	(417.00)		0.00	50	7 6		
43-cra			(417.86)	4 0 0 0 1 -	0.23	52	/ Cr	agoe	
		recommended values	417.9 ± 0.1	4.000 ± 0	.010 0.23	5 ± 0.004			

Nadezhdin's [1883-nad] value for the t_c was the average of 11 observations; his name was spelled Nadejdine in 1883-nad-1. Coffin and Maass first reported the t_c in [27-cof/maa], although the details of their measurements were given in their later paper [28-cof/maa].

Table	2	(continued)
-------	---	-------------

year	values reported in nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	method ^a	authors
	(Z)-PENT-2-ENE (cis-Pent-2	ene): molar	mass 70.1344 g; 0	CASRN 627-20-	3	
71-len/reb	395.2 °F, 535 psi	474.9	3.69		1a	Lenoir <i>et al</i> .
	recommended values	475 ± 1	3.69 ± 0.10			
The critical constants were measured in a Kay-type phase boundary apparatus. The sample was 96.3 mol % (Z)- and 3.5 mol %						

(*E*)-pent-2-ene; 0.2 mol % of other impurities.

year	values reported in nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	method ^a	authors
	3-METHYLBUT-1-E	NE: molar ma	ss 70.1344 g; CAS	SRN 563-45-1		
91-ma/ma	$T_{68}-~T_{48}=0.034~{ m K};~T_{90}-$ (179.54 \pm 0.14) °C	$T_{68} = -0.039$ 452.65	K; $T_{90} - T_{48} = -0$ 3.527 ± 0.025	0.005 K at 452.5 K 0.2300 ± 0.0009	1, 7	Ma <i>et al</i> .
	recommended values	452.7 ± 0.3	3.53 ± 0.03	$\textbf{0.230} \pm \textbf{0.010}$		
	2-METHYLBUT-2-ENE (β -I	soamylene): m	olar mass 70.134	4 g; CASRN 513-35-	9	
1882-zhu, 1883-nad	191.6 °C, 33.93 atm	464.8	3.438	-	1	Zhuk, Nadezhdin
51-kiy/suz	197.2 °C, 33.7 atm	470.4	3.415		1	Kiyama <i>et al</i> .
	recommended values	470 ± 1	3.42 ± 0.10			

Zhuk [1882-zhu], Nadezhdin's student, reported the data for "amylene"; Nadezhdin [1883-nad] repeated the t_c , but identified the compound as "isoamylene", which may be a mixture of 3-methylbut-1-ene and 2-methylbut-2-ene. The reported t_c is remarkably close to the modern value for pent-1-ene.

Kiyama *et al.* [51-kiy/suz] also determined via their *pVT* measurements that $t_c = (195 \text{ to } 200) \,^{\circ}\text{C}$. Their sample had a $t_b = 37.8 \,^{\circ}\text{C}$, 0.8 deg below the accepted value. It should also be noted that the data reported by Kiyama's group [51-kiy/ike] for ethyne are very poor: 3 K and 0.2 MPa higher than the recommended values for T_c and p_c .

year	values reported in nonstandard units	T_{90}/K	<i>p</i> /MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$ m	ethod ^a	authors	
CYCLOPENTENE: molar mass 68.118 52 g; CASRN 142-29-0							
57-amb/gra 90-tej/ans 90-tej/ros	$T_{68}-~T_{48}=0.055$ K; T_{90} (232.9 \pm 0.05) °C	$T_{68} = -0.0$ 506.06 507.6 ± 0.3 507.0 ± 0.6	40 K; $T_{90} - T_{48}$ 4.802 \pm 0.02	x = 0.015 K at 506 K 0.278 ± 0.005	1 1c 1c	Ambrose and Grant Teja and Anselme Teja and Rosenthal	
	recommended values	506.5 ± 0.5	4.80 ± 0.05	0.278 ± 0.010			
	CYCLOHEXENE	E: molar mass	82.1454 g; CAS	SRN 110-83-8			
60-amb/cox 62-che/mcc	$T_{68} - T_{48} = 0.070~{ m K};~T_{90}$ (287.27 \pm 0.02) $^{\circ}{ m C}$ recommended values	$egin{array}{llllllllllllllllllllllllllllllllllll$	39 K; T ₉₀ – T ₄₈	= 0.031 K at 560 K	1 1	Ambrose <i>et al.</i> Cheng <i>et al.</i>	
						N	
Ambrose <i>et al.</i> [60-amb/cox] reported that the compound was only slightly unstable (+0.03 K \cdot h ⁻¹).							
year	values reported in nonstandard units	$T_{90}/{ m K}$	p/MPa	o/g·cm ⁻³ method ^a	1	authors	
	PROPADIENE (Aller	ne): molar ma	ss 40.064 76 g;	CASRN 463-49-0			
05-les/cha	120.75 °C	393.9	5.05	1	Lesp	ieau and Chavanne	
47-stu	51.8 atm	(393.9)	5.25	6	Stull		
	recommended values	$394\pm?$	$5.25\pm?$				
	Stull [47-stu] apparently ext	rapolated vap	or pressure dat	a to the $t_{\rm c}$ of [05-les/c	ha].		
year	values reported in nonstandard units	$T_{90}/{ m K}$	<i>p</i> /MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	metho	l ^a authors	
42-gar/ada 43-cra 45-sco/mey	BUTA-1,3-DIENE 325.7 °F 152 °C, 32 420 mmHg recommended values	: molar mass 436.3 (425.2) 425.2 425.2 425 ± 1	$54.091\ 64\ { m g;\ CA}$ 4.322 4.32 ± 0.10	$\begin{array}{c} \text{ASRN 106-99-0} \\ 0.2430 \\ 0.245 \\ 0.245 \pm 0.010 \end{array}$? 7 1, 5, 7	Garner <i>et al.</i> Cragoe Scott <i>et al.</i>	
Garner <i>et al.</i> [42-gar/ada] gave "private communication" for the source of their t_c . Cragoe [43-cra] calculated ρ_c at the then unpublished T_c (and p_c) of Scott <i>et al.</i> [45-sco/mey]. Scott <i>et al.</i> [45-sco/mey] state that "the true critical pressure may be slightly lower" than the value they give.							
year	values reported in nonstandard unit	s T ₉₀ /k	K <i>p</i> /MPa	$ ho/g\cdot cm^{-3}$	method	a authors	
1883-paw	HEXA-1,5-DIENE (Dial 234.4 °C recommended values	llylene): molar 507.6 508 ±	r mass 82.1454 ?	g; CASRN 592-42-7	1	Pawlewski	

Table 2 (Continued)

year	values reported in nonstandard units	$T_{90}/{ m K}$	<i>p</i> /MPa	$ ho/{ m g}{ m \cdot}{ m cm}^{-3}$	method ^a	authors
	TERPENES	: molar mas	s 136.237 04 g			
	(+)-(<i>R</i>)- <i>p</i> -MENTHA-1,8-DIE	NE [(+)-d-LI	MONENE]; C	ASRN 5989-27-5		
90-smi/neg		653 ± 2	_	$\textbf{0.29} \pm \textbf{0.01}$	1c	Smith <i>et al</i> .
	(–)-(1 <i>S</i>)-PIN	-2-ENE: CA	SRN 7785-26-4	1		
90-smi/neg		644 ± 2		0.30 ± 0.01	1c	Smith et al.
	(+)-CAR-3-	ENE: CASR	N 13466-78-9			
90-smi/neg		658 ± 2		$\textbf{0.28} \pm \textbf{0.01}$	1c	Smith et al.

Landolt-Börnstein [23-lan/boe] report for turpentine oil a calculated (?) *t*_c attributed to Guldberg (*Beibl. Ann. Phys.* **1883**, *7*, 350): 376.0 °C or 649 K, which is in close agreement with the results of Smith *et al.* [90-smi/neg]. The sample of (+)-car-3-ene used by 90-smi/neg was only 92.4% pure. (The menthadiene and pinene samples were 99% pure.)

values reported in T_{90}/K p/MPa $\rho/g \cdot cm^{-3}$ nonstandard units method^a authors vear ETHYNE (Acetylene): molar mass 26.037 88 g; CASRN 74-86-2 $T_{68} - T_{48} = -0.010$ K; $T_{90} - T_{68} = -0.009$ K; $T_{90} - T_{48} = -0.019$ K at 308 K 37.05 °C, 68 atm 1879-ans 310.2 6.9 0.36 1, 5, 7 Ansdell 1897-kue 35.25 °C, 61.02 atm 308.4 6.183 1a Kuenen 36.5 °C, 61.6 atm 309.6 0.314 McIntosh 07-mci 6.241 09-mat 37.05 °C 310.2 0.2306 1, 7 Mathias 10-car/bau 35.5 °C, 61.6 atm 308.6 6.24 Cardoso and Baume 1 (35.50 ± 0.10) °C, (61.65 ± 0.10) atm 308.63 12-car/bau 6.247 1 Cardoso and Baume 51-kiy/ike 38.5 °C, 64.0 atm 311.6 6.48 3 (?) Kiyama et al. 56-amb (35.18 ± 0.05) °C 308.31 Ambrose 1 64-amb/tow 35.18 °C, (60.58 \pm 01) atm 308.31 6.138 Ambrose and Townsend 66-kho 0.1126 L·mol-1 308.64 0.231 Khodeeva 1 Goloborod'ko and Khodeeva 72-gol/kho 35.20 °C 308.32 1 $308.3 \pm 0.1 \quad 6.138 \pm 0.010 \quad 0.232 \pm 0.004$ recommended values

Ansdell [1879-ans] measured the vapor pressure up to 36.9 °C (67.96 atm) and the liquid density up to 35.8 °C (0.364 g·cm⁻³); his values were rounded off.

Kobe and Lynn [53-kob/lyn] cite two papers by J. Dewar. The first one (*Proc. R. Soc. London* **1880**, *30*, 538–546) is a qualitative investigation of mixtures of CO₂, including the CO₂/acetylene binary. In the second paper (*Philos. Mag.* **1884**, *18*, 210–216) Dewar reported the T_c and p_c values of Ansdell (who investigated ethyne at Dewar's suggestion), but also proposed, by analogy with CO₂, that $\rho_c = 0.32$ g·cm⁻³ rather than 0.36 g·cm⁻³.

McIntosh [07-mci] determined the ρ_c by weighing samples at the critical point; he concluded that he could "hardly recommend" his method.

Cardoso and Baume [10-car/bau] report four individual measurements of p_c as 61.6 atm, but give the average as 61.5 atm. F. Din (*Thermodynamic Functions of Gases*; Butterworths: London, 1962; Vol. 2) selected the T_c and p_c of 12-car/bau and the ρ_c of 09-mat; the t_c from the latter reference was reported incorrectly as 35.4 °C.

Khodeeva [66-kho] may only have measured T_c , because the method involves filling up a tube of known volume with a liquid "such that its density has the critical value, and the critical temperature ... is measured".

year	values reported	in nonstandard units	$T_{90}/{ m K}$	<i>p</i> /MPa	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	method ^a	authors
	PR	OPYNE (Methylacetyle)	ne, allylene):	molar mass 40	0.064 76 g; CASRI	N 74-99-7	
		$T_{68} - T_{48} = 0.012$ K; T_9	$_0 - T_{68} = -0.0$	$32 \text{ K}; T_{90} - T$	$T_{48} = -0.020$ K at	402 K	
05-les/cha	129.5 °C		402.6			1	Lespieau and Chavanne
21-maa/wri	127.9 °C		401.0			1	Maass and Wright
47-stu	52.8 atm		(401.0)	5.35		6	Stull
62-voh/kan	(129.23 ± 0.02)	°C, (55.54 \pm 0.02) atm	402.36	5.628	0.2449 ± 0.002	3	Vohra <i>et al</i> .
	recommended va	alues	402.4 ± 0.2	5.63 ± 0.02	$\textbf{0.245} \pm \textbf{0.005}$		

Stull [47-stu] extrapolated vapor pressure data to the t_c of [21-maa/wri].							
year	values reported in nonstandard units	$T_{90}/{ m K}$	<i>p</i> /MPa	$ ho/{ m g}{ m \cdot cm^{-3}}$	method ^a	authors	
	BUT-1-YNE (Ethylacetylene): molar mass 54.091 64 g; CASRN 107-00-6						
95-ste		440 ± 1	4.586 ± 0.10	0.257 ± 0.03	3	Steele	
	recommended values	440 ± 2	4.60 ± 0.20	0.26 ± 0.03			

^a For methods see Table 3.

What was said for hept-1-ene can be repeated for oct-1ene, except that the agreement in T_c is not as good. The results of Smith *et al.* [90-smi/neg] are of lower quality: 3 K and 0.03 g·cm⁻³ higher than the recommended values for T_c and ρ_c .

Finally, only Gude's measurements [91-gud/ros] are available for C₉, C₁₀, and C₁₂ alk-1-enes. No p_c was measured for C₉, and no ρ_c for C₁₂.

Other Alkenes

Only the three butenes, cyclopentene, and cyclohexene have been investigated by several groups, but the critical pressure of the two but-2-enes has not yet been determined experimentally. The following compounds have experimental data: (*Z*)-but-2-ene (*cis*-but-2-ene), (*E*)-but-2-ene (*trans*-but-2-ene), 2-methylpropene (isobutylene), (*Z*)-pent-2-ene (*cis*-pent-2-ene), 3-methylbut-1-ene, 2-methylbut-2-

Table 3. Key to Methods of Critical Point Determination(Reprinted with Permission from 95-amb/you; Copyright1995 American Chemical Society)

- 1. visual-in glass tube
- 2. visual-in cell with windows
- 3. nonvisual -pVT measurement
- 4. other nonvisual measurement
- 5. critical pressure measurement combined with vapor
- pressure measurement up to the critical pointcritical pressure by extrapolation of vapor pressure curve
- 7. orthobaric density measurements
- 8. equation of state, thermodynamic study
- 9. calculation from another physical property
- 10. literature survey
- (a) with stirring
- (b) instrumental detection of critical point
- (c) special feature of apparatus

ene, cyclopentene, and cyclohexene.

(*Z*)- and (*E*)-But-2-ene. Coffin and Maass [28-cof/maa] measured the critical temperature of a " β -butylene" sample that they synthesized. They reported a melting point (-127 °C) that is between that of (*Z*)-(-138.9 °C) and (*E*)-but-2-ene (-105.57 °C), but a normal boiling point (1.0 °C) that is much closer to that of (*E*)-but-2-ene (0.88 °C) than that of (*Z*)-but-2-ene (3.72 °C).

Gershinowitz and Wilson [38-ger/wil] showed that (Z)but-2-ene is the high-boiling isomer, whereas previously it had been thought to be the low-boiling isomer. Cragoe [43-cra] identified the two isomers properly, but Kobe and Lynn switched Cragoe's results. However, Kobe and Lynn only made recommendations for the (Z–E) mixture, for which they averaged Cragoe's estimates for T_c , p_c , and ρ_c (which Cragoe calculated by applying the law of rectilinear diameters).

The critical temperature of both isomers was subsequently measured by Ambrose *et al.* [60-amb/cox], but for the critical pressure we still have only Cragoe's 1943 estimates. In view of the closer agreement of Cragoe's value with Ambrose's T_c for (*E*)-but-2-ene, the p_c of this isomer has been assumed to have a lower uncertainty than that for (*Z*)-but-2-ene.

2-Methylpropene. No experimental measurements have been reported on the industrially important 2-methylpropene since 1942, but fortunately, as in the case of but-1-ene, those measurements were made by Beattie's group [42-bea/ing] and were confirmed by Benedict [42-ben].

⁵ Alkenes. Relatively recent experimental data are available for (Z)-pent-2-ene [71-len/reb], 3-methylbut-1-ene [91-ma/ma], and 2-methylbut-2-ene [51-kiy/suz]. Additional data on C₅ alkenes were measured from 1882 to 1903, but the identity of the C₅ alkenes is unclear. Zhuk [1882-zhu] called his sample amylene, but the 1883 paper by Nadezhdin, Zhuk's professor, and the German summary [1883-nad, -nad-1] called it isoamylene, which is either 3-methylbut-1-ene or 2-methylbut-2-ene. Pawlewski [1883paw] and Altschul [1893-alt] referred to amylene, which can be pent-1-ene (α-*n*-amylene) or pent-2-ene (β-*n*amylene), although Pawlewski's t_b (38 °C) is close to that of 2-methylbut-2-ene (38.55 °C). There may even be a question about Pictet's [1895-pic, -pic/alt] and Vespignani's [03-ves] samples; see notes in Table 2.

The identity of the samples used in the 1882 to 1903 investigations is of interest only because more recent reviews do not agree on their identification. For example, Kobe and Lynn [53-kob/lyn] give the results of Pawlewski, Altschul, Pictet and Altschul, and Vespignani under pent-1-ene; Vespignani's values are also given for pent-2-ene; and Nadejdine's (sic) results are listed under "isoamylene".

Also questionable is the "diamylene" sample used by Altschul [1893-alt], which most likely was a mixture of isomers, and for this reason the critical temperature reported by Altschul, (341 to 342) °C, is not included in Tables 1 and 2. In a 1943 compilation of physical constants [43-dos], Altschul's diamylene was assumed to be 2,6,6-trimethylhept-2-ene.

Finally, the values reported by Ambrose [80-amb] for (*E*)-pent-2-ene, 2-methylbut-1-ene, and 2-methylbut-2-ene are estimates.

Cyclopentene and Cyclohexene. Teja's group [90-tej/ ans; 90-tej/ros] measured a significantly higher critical temperature for cyclopentene than Ambrose and Grant [57amb/gra]. On the other hand, for cyclohexene, which is slightly unstable at its critical point, the T_c of Ambrose and Grant has been confirmed by Cheng *et al.* [62-che/mcc].

Alkadienes

Experimental data have been reported for propadiene, buta-1,3-diene, and hexa-1,5-diene. All three are unstable at their critical points, and only for the commercially very important buta-1,3-diene, which polymerizes rapidly above 385 K, do we have a relatively recent determination [45sco/mey]. Although there may be considerable uncertainty in the critical temperature of propadiene [05-les/cha] and hexa-1,5-diene [1883-paw], it should be noted that the critical temperature reported by Lespieau and Chavanne [05-les/cha] for propyne agrees with the modern value.

Terpenes

Smith *et al.* [90-smi/neg] measured the critical temperature and density of (+)-(R)-p-mentha-1,8-diene [(+)-Dlimonene], (-)-(1.5)-pin-2-ene, and (+)-car-3-ene. The results may be considerably uncertain, because the terpenes are unstable at their critical point. It has already been noted that the results for oct-1-ene reported in the same paper were of low quality.

Alkynes (Acetylenes)

Experimental data could be found in the open literature only for ethyne (acetylene) and propyne (methylacetylene). In addition, unpublished data are available for but-1-yne (ethylacetylene). Calculated values for the critical temperature of higher alkynes have been presented by Morehouse and Maas [31-mor/maa, 34-mor/maa], but it will be shown later that these values are rough estimates.

Ethyne. Kobe and Lynn [53-kob/lyn] reviewed the measurements of McIntosh [07-mci], Mathias [09-mat], Cardoso and Baume [12-car/bau], and Kiyama *et al.* [51-kiy/ike]. They also presented the data of Ansdell [1879-ans] and Kuenen [1897-kue] "for historical reasons". However, Kuenen's results, especially for T_c , are in excellent agreement with the recommended values.

The recommended values for T_c and p_c are based on the measurements of Ambrose [56-amb, 64-amb/tow]. In the case of T_c , there is excellent agreement with both more recent [72-gol/kho] and very old measurements [1897-kue]. Even the p_c reported in the latter reference is only 0.7% higher than the recommended value.

Mathias [09-mat] measured the saturated liquid and vapor densities up to 32.93 °C and determined the mean of the densities as a function of *t*. $\rho/\text{g}\cdot\text{cm}^{-3} = 0.25431 - 0.00064t/$ °C. At the recommended *t*_c (35.16 °C), this equation gives $\rho_c = 0.2318 \text{ g}\cdot\text{cm}^{-3}$, which is the value we recommend (rounded off).

Propyne. The T_c 's in the oldest [05-les/cha] and most recent sources [62-voh/kan] agree very well, while the extrapolated value for p_c reported by Stull [47-stu] is 5% lower than the only other available value [62-voh/kan].

Table 4. Critical Temperature of Alkynes^a

	calcd a	exptl		
	34-mor/maa	this work	t _c /°C	$\Delta T/K$
ethyne	39.7	39.3	35.2	4.1
propyne	121.6	141.6	129.2	12.4
but-1-yne	190.5	189.1	167	22
but-2-yne	215.5	215.5		
pent-1-yne	220.3	220.0		

^{*a*} The value for ethyne was calculated with k = 2.02, as given in 34-mor/maa; with the value k = 2.09 given in 31-mor/maa, we calculate 35.5 °C, although even that reference gives 39.7 °C.

But-1-yne. Unpublished measurements on but-1-yne have been made by Steele's group [95-ste]. A 95%-pure sample was purchased from Scott Specialty Gases and was purified by GLC to 99.15%. The vapor pressure was measured with a dead-weight gauge from 308 K to 443 K (no decomposition was observed until 433 K), and the critical temperature was inferred to be (440 \pm 1) K by the corner in the curve when pressure was plotted against temperature. Because this is an insensitive method, the uncertainty in T_c may be closer to 2 K. Correspondingly, the uncertainty in the reported p_c , 4.586 MPa, may be 0.2 MPa. Plotting pressure against the density, which was also measured, led to the estimate $\rho_c = 0.257$ g·cm⁻³, with an uncertainty of 10%.

Calculations with the Ramsay-Shields Equation

In addition to the experimental measurements on ethyne and propyne, several reviews (e.g., ref 53-kob/lyn) report critical temperature values for C₄ to C₅ alkynes that have been determined with the Ramsay–Shields equation. This is at best an approximation, because it is based on surface tension measurements and the relation between surface tension, σ , and critical temperature that was proposed by Ramsay and Shields [1893-ram/shi]:

$$\sigma V^{2/3} = k(t_{\rm c} - t - 6) \tag{1}$$

In eq 1, V is the molar liquid volume and k is a constant that is equal to 2.12 for "normal" substances. As noted in ref 53-kob/lyn, k is not a true constant and eq 1 is of limited accuracy.

Morehouse and Maass [31-mor/maa, 34-mor/maa] measured the surface tension of propyne, but-1-yne, but-2-yne (dimethylacetylene), and pent-1-yne and converted them (and the surface tension of ethyne) to critical temperatures with eq 1. We recalculated the values after noting that Kobe and Lynn [53-kob/lyn] had questioned the result for propyne. Both sets of calculations, the experimental values, and the differences (from our calculations) are given in Table 4.

The comparison given in Table 4 clearly raises questions about the results of Morehouse and Maass with eq 1. The difference between calculated and experimental values apparently increases with increasing carbon number (the calculated value for propyne agrees with the result given in ref 53-kob/lyn), and therefore the uncertainty in the calculated values for but-2-yne and pent-1-yne may exceed 20 K. For this reason, we have not included any T_c values calculated with eq 1 in Table 2.

Overview of Recommendations (Table 1)

Table 1 summarizes the recommended critical values given in Table 2. It also includes, where appropriate, the critical volume, V_c , and the critical compressibility factor, $Z_c = p_c V_c/RT_c$ (R = 8.31451 J·mol⁻¹·K⁻¹). A superficial comparison of the recommendations for linear alk-1-enes

with those for normal alkanes from ref 95-amb/tso suggests that the ratio of the T_c 's reduces very close to unity by C_{12} , but the p_c ratio does not decrease with increasing carbon number. At the same carbon number, it appears that the p_c of linear alk-1-enes is 6% larger than that of normal alkanes. Steele and Chirico [93-ste/chi], in their review of the properties of C_5 + alkenes, have pointed out the similar trends in the ρ_c of linear alk-1-enes and normal alkanes.

Acknowledgment

This work is a product of the IUPAC Commission I.2 on Thermodynamics, Subcommittee on Thermodynamic Data, critical properties group, under the leadership of C. L. Young (University of Melbourne, Melbourne, Australia). The following members commented on the preliminary draft of the paper: K. M. de Reuck (Imperial College, London, England), J. H. Dymond (University of Glasgow, Glasgow, Scotland), and C. L. Young. C.T. is grateful to Exxon Research and Engineering Co. for permission to publish this paper.

Registry No. Supplied by the Author: Ethene, 74-85-1; propene, 115-07-1; but-1-ene, 106-98-9; pent-1-ene, 109-67-1; hex-1-ene, 592-41-6; hept-1-ene, 592-76-7; oct-1ene, 111-66-0; non-1-ene, 124-11-8; dec-1-ene, 872-05-09; dodec-1-ene, 112-41-4; (*Z*)-but-2-ene, 590-18-1; (*E*)-but-2ene, 624-64-6; 2-methylpropene, 115-11-7; (*Z*)-pent-2-ene, 627-20-3; 3-methylbut-1-ene, 563-45-1; 2-methylbut-2-ene, 513-35-9; cyclopentene, 142-29-0; cyclohexene, 110-83-8; propadiene, 463-49-0; buta-1,3-diene, 106-99-0; hexa-1,5diene, 592-42-7; (+)-(*R*)-*p*-mentha-1,8-diene [(+)-D-limonene], 5989-27-5; (-)-(1*S*)-pin-2-ene, 7785-26-4; (+)-car-3-ene, 13466-78-9; ethyne, 74-86-2; propyne, 74-99-7; but-1-yne, 107-00-6.

Literature Cited

1879-ans	Ansdell, G. <i>Proc. R. Soc. London</i> 1879 , <i>29</i> , 209–214; <i>Chem. News</i> 1879 , <i>40</i> , 136–138 (ethyne).
1880-van	van der Waals, J. D. <i>Beibl. Ann. Phys.</i> 1880 , <i>4</i> , 704 (ethene).
1882-cai	Cailletet, L. <i>Compt. Rend.</i> 1882 , <i>94</i> , 1224–1226 (ethene).
1882-nad	Nadezhdin, A. <i>Zh. Russ. FizKhim. Obsh.</i> 1882 , <i>14</i> , 536–541 (propene).
1882-sar	Sarrau, E. Compt. Rend. 1882, 94, 845-851 (ethene).
1882-zhu	Zhuk, K. <i>Zh. Russ. FizKhim. Obsh.</i> 1882 , <i>14</i> , 157–161 (2-methylbut-2-ene).
1883-nad	Nadezhdin, A. <i>Zh. Russ. FizKhim. Obsh.</i> 1883 , <i>15</i> , 25–29 (propene, 2-methylpropene, 2-methylbut-2-ene).
1883-nad-1	Nadejdine (sic), A. <i>Beibl. Ann. Phys.</i> 1883 , <i>7</i> , 678–681; summary of 1882-nad, 1882-zhu, 1883-nad (propene, 2-methylpropene, 2-methylbut-2-ene).
1883-paw	Pawlewski, B. Ber. Dtsch. Chem. Ges. 1883, 16, 2633-2636 (pent-1-ene, oct-1-ene, hexa-1,5-diene).
1884-dew	Dewar, J. Philos. Mag. 1884, 18, 210-216 (ethene).
1886-cai/mat	Cailletet, L.; Mathias, E. <i>Compt. Rend.</i> 1886 , <i>102</i> , 1202–1207 (ethene).
1893-alt	Altschul, M. Z. Phys. Chem. 1893, 11, 577–597 (pent-1-ene, hex-1-ene, oct-1-ene, diamylene).
1893-ram/shi	Ramsay, W.; Shields, J. Z. Phys. Chem. 1893, 12, 433-475.
1895-ols	Olszewski, Charles (sic). Philos. Mag. 1895, 39, 188-212 (ethene).
1895-pic	Pictet, R. Compt. Rend. 1895, 120, 43-45 (pent-1- ene).
1895-pic/alt	Pictet, R.; Altschul, M. Z. Phys. Chem. 1895, 16, 26-28 (pent-1-ene).
1897-kue	Kuenen, J. P. <i>Philos. Mag.</i> 1897 , <i>44</i> , 174–199 (ethyne).
1897-vil	Villard, P. Ann. Chim. Phys. 1897, 10, 387-432 (ethene).

Journal of Chemical and Engineering Data, Vol. 41, No. 4, 1996 655

03-ves	Vespignani, G. B. <i>Gazz. Chim. Ital.</i> 1903 , <i>33</i> , 73–78 (pent-1-ene).	45-sco/mey	Scott, R. B.; Meyers, C. H.; Rands, R. D., Jr.; Brickwedde, F. G.; Bekkedahl, N. J. Res. Natl. Bur. Stord 1065 25 20. 95 (hurts 1.2 diama).
05-les/cha	Lespieau, R.; Chavanne, G. <i>Compt. Rend.</i> 1905 , <i>140</i> , 1035–1036 (propadiene, propyne).	46-old/sag	Olds, R. H.; Sage, B. H.; Lacey, W. N. Ind. Eng.
07-mci	McIntosh, D. J. Phys. Chem. 1907 , 11, 306–317 (ethyne).	47-stu	Stull, D. R. <i>Ind. Eng. Chem.</i> 1947 , <i>39</i> , 517–540
09-mat	Mathias, E. Compt. Rend. 1909 , 148, 1102–1105; J. Chem. Soc. 1909 , 96, 552–553 (ethyne).	48-day/nic	(propadiene, propyne). Day, H. O.; Nicholson, D. E.; Felsing, W. A. <i>J. Am.</i>
10-car/bau	Cardoso, E.; Baume, G. <i>Compt. Rend.</i> 1910 , <i>151</i> , 141–143 (ethyne).	48-kav	Chem. Soc. 1948 , 70, 1784–1785 (pent-1-ene). Kay, W. B. Ind. Eng. Chem. 1948 , 40, 1459–1464
12-car/arn	Cardoso, E.; Arni, E. <i>J. Chim. Phys.</i> 1912 , <i>10</i> , 504–508 (otherna)	18 mas/maa	$(a_{1}^{2}, \dots, a_{n}^{2})$ $(a_{1}^{2}, \dots, a_{n}^{2})$ $(a_{n}^{2}, \dots, a_{n}^{2})$
12-car/bau	Cardoso, E.; Baume, G. J. Chim. Phys. 1912 , 10,	40 f-m/s-st	592–603 (ethene).
15-sei/bur	Seibert, F. M.; Burrell, G. A. J. Am. Chem. Soc.	49-181/Sag	<i>41</i> , 1734–1737 (propene).
21-maa/wri	1915 , <i>37</i> , 2683–2691 (propene). Maass, O.; Wright, C. H. <i>J. Am. Chem. Soc.</i> 1921 ,	49-mar/pre	Marchman, H.; Prengle, H. W., Jr.; Motard, R. L. Ind. Eng. Chem. 1949 , 41, 2658–2660 (propene).
23-lan/boe	43, 1098–1111 (ethene, propene, propyne). Landolt-Börnstein Physikalisch-Chemische Ta-	50-bea/mar	Beattie, J. A.; Marple, S., Jr. J. Am. Chem. Soc. 1950 , 72, 1449–1452 (but-1-ene).
	<i>bellen</i> , 5th ed.; Springer-Verlag: Berlin, 1923; Vol. I, pp 253–266 (review).	51-kiy/ike	Kiyama, R.; Ikegami, T.; Inoue, K <i>. Rev. Phys. Chem.</i> <i>Jpn.</i> 1951 , <i>21</i> , 58–62 (ethyne).
27-cof/maa	Coffin, C. C.; Maass, O. <i>Trans. R. Soc. Can. Sect. 3</i> 1927 , <i>21</i> (No. 3), 33–40 (2-methylpropene).	51-kiy/suz	Kiyama, R.; Suzuki, K.; Ikegami, T. <i>Rev. Phys. Chem. Jpn.</i> 1951 , <i>21</i> , 50–57 (2-methylbut-2-ene).
27-mat/cro	Mathias, E.; Crommelin, C. A.; Watts, H. G. <i>Com- mun. Kamerlingh Onnes Lab., Univ. Leiden</i> 1927 , No. 1892 (otherwor)	53-kob/lyn	Kobe, K. A.; Lynn, R. E., Jr. <i>Chem. Rev.</i> 1953 , <i>52</i> , 117–236 (review).
28-cof/maa	Coffin, C. C.; Maass, O. J. Am. Chem. Soc. 1928 , 50 1427–1437 (hutenes)	53-whi/mas	Whiteway, S. G.; Mason, S. G. <i>Can. J. Chem.</i> 1953 , <i>31</i> , 569–584 (ethene).
29-bri	Britton, G. T. <i>Trans. Faraday Soc.</i> 1929 , <i>25</i> , 520– 525 (ethene).	55-kre	Kreglewski, A. <i>Rocz. Chem.</i> 1955 , <i>29</i> , 95–106 (propene).
29-mat/cro	Mathias, E.; Crommelin, C. A.; Watts, H. G. Ann. Phys. 1929 , 11, 343–353 (ethene).	56-amb	Ambrose, D. <i>Trans. Faraday Soc.</i> 1956 , <i>52</i> , 772–781 (ethyne).
31-mor/maa	Morehouse F. R.; Maass, O. <i>Can. J. Res.</i> 1931 , <i>5</i> , 306–312.	57-amb/gra	Ambrose, D.; Grant, D. G. <i>Trans. Faraday Soc.</i> 1957 , <i>53</i> , 771–778 (cyclopentene).
33-win/maa	Winkler, C. A.; Maass, O. <i>Can. J. Res.</i> 1933 , <i>9</i> , 610–612 (propene).	58-row/sut	Rowlinson, J. S.; Sutton, J. R.; Weston, J. F. Proceedings of the Joint Conference on Thermody- namic and Transport Properties of Eluids 1957.
34-mor/maa	Morehouse, F. R.; Maass, O. <i>Can. J. Res.</i> 1934 , <i>11,</i> 637–643.		Institution of Mechanical Engineers: London, 1958 (ethene).
37-maa/ged 38-ger/wil	Maass, O.; Geddes, A. L. <i>Proc. R. Soc. London</i> 1937 , <i>A236</i> , 303–332 (ethene).	60-amb/cox	Ambrose, D.; Cox, J. D.; Townsend, R. Trans. Faraday Soc. 1960 , 56, 1452–1459 (pent-1-ene, hex- 1-ene, hept-1-ene, oct-1-ene, but-2-enes, cyclohex-
00 ·/	1938 , <i>6</i> , 247–251.	62-che/mcc	ene). Cheng, D. CH.; McCoubrey, J. C.; Phillips, D. G.
38-mci/maa	McIntosh, R. L.; Maass, O. <i>Can. J. Res. B</i> 1938 , <i>16</i> , 289–302 (ethene).		<i>Trans. Faraday Soc.</i> 1962 , <i>58</i> , 224–229 (cyclohex- ene).
39-dac/mci	Dacey, J. R.; McIntosh, R. L.; Maass, O. <i>Can. J. Res.</i> B 1939 , <i>17</i> , 206–213 (ethene).	62-voh/kan	Vohra, S. P.; Kang, T. L.; Kobe, K. A.; McKetta, J. J. <i>J. Chem. Eng. Data</i> 1962 , <i>7</i> , 150–155 (propyne).
39-mci/dac	McIntosh, R. L.; Dacey, J. R.; Maass, O. <i>Can. J. Res.</i> <i>B</i> 1939, <i>17</i> , 241–250 (ethene).	64-amb/tow	Ambrose, D.; Townsend, R. <i>Trans. Faraday Soc.</i> 1964 , <i>60</i> , 1025–1029 (ethyne).
39-sch/gil	Scheeline, H. W.; Gilliland, E. R. <i>Ind. Eng. Chem.</i> 1939 , <i>31</i> , 1050–1057 (2-methylpropene).	64-shi/koh	Shim, J.; Kohn, J. P. <i>J. Chem. Eng. Data</i> 1964 , <i>9</i> , 1–2 (ethene).
40-gil/sch	Gilliland, E. R.; Scheeline, H. W. <i>Ind. Eng. Chem.</i> 1940 , <i>32</i> , 48–54 (propene).	66-kho	Khodeeva, S. M. <i>Russ. J. Phys. Chem.</i> 1966 , <i>40</i> , 1061–1063 (ethyne).
40-nal/maa	Naldrett, S. N.; Maass, O. <i>Can. J. Res. B</i> 1940 , <i>18</i> , 118–121 (ethene).	68-kud/ala	Kudchadker, A. P.; Alani, G. H.; Zwolinski, B. J. Chem. Rev. 1968 , 68, 659-735 (review).
40-sou	Souders, M. Private communication to Vaughan and Graves [40-vau/gra], 1940 (propene).	71-len/reb	Lenoir, J. M.; Rebert, C. J.; Hipkin, H. G. <i>J. Chem. Eng. Data</i> 1971 . <i>16</i> . 401–404 ((Z)-pent-2-ene).
40-vau/gra	Vaughan, W. E.; Graves, N. R. <i>Ind. Eng. Chem.</i> 1940 , <i>32</i> , 1252–1256 (propene).	71-vas	Vashchenko, D. M.: 11 co-authors (I. A. Neduzhii identified as "principal author"). <i>Thermodynamic</i>
41-lu/new	Lu, H.; Newitt, D. M.; Ruhemann, M. <i>Proc. R. Soc.</i> <i>London</i> 1941 , <i>A178</i> , 506–525 (propene).		and Transport Properties of Ethylene and Propylene, National Bureau of Standards: Washington, DC,
42-bea/ing	Beattie, J. A.; Ingersoll, H. G.; Stockmayer, W. H. J. Am. Chem. Soc. 1942 , 64, 546-548 (2-methyl-	71-zer/kog	Russian in 1971). Zernov, V. S.: Kogan, V. B.: Lyubetskii, S. G.:
42-ben	Benedict, M. Private communication to Beattie <i>et</i>		Duntov, F. I. J. Appl. Chem. USSR 1971, 44, 693–696 (ethene).
42-gar/ada	Garner, J. B.; Adams, L.; Stuchell, R. M. <i>Petrol.</i>	72-gol/kho	Goloborod'ko, N. P.; Khodeeva, S. M. <i>Russ. J. Phys. Chem.</i> 1972 , <i>46</i> , 235–237 (ethyne).
43-cra	<i>Kenner</i> 194 <i>z</i> , <i>21</i> , 321–332 (buta-1,3-diene). Cragoe, C. S. <i>Natl. Bur. Stand. LC-736</i> 1943 (pro-	72-mou/kay	Mousa, A. H. N.; Kay, W. B.; Kreglewski, A. <i>J.</i> <i>Chem. Thermodyn.</i> 1972 , <i>4</i> , 301–311 (pent-1-ene).
43-dos	pene, butenes, buta-1,3-diene). Doss, M. P. <i>The Physical Constants of the Principal Hydrocarbons</i> , 4th ed.; The Texas Co.: New York, 1943.	74-ang/arm	Angus, S.; Armstrong, B.; de Reuck, K. M.; Feath- erstone, W.; Gibson, M. R. <i>Ethylene</i> ; IUPAC Inter- national Thermodynamic Tables of the Fluid State, Vol. 2 (1972); Butterworths, London, 1974.

656 Journal of Chemical and Engineering Data, Vol. 41, No. 4, 1996

74-kay/you	Kay, W. B.; Young, C. L. <i>Int. Data Ser. A</i> 1974 , 198		593–734 (ethene).	
74-mol	Moldover, M. R. J. Chem. Phys. 1974 , 61, 1766–	86-van/jac	Van Poolen, L. J.; Jacobsen, R. T.; Jahangiri, M. <i>Int. J. Thermophys.</i> 1986 , <i>7</i> , 513–524 (ethene).	
75-ben	Bender, E. <i>Cryogenics</i> 1975 , <i>15</i> , 667–673 (ethene,	88-bru	Brunner, E. <i>J. Chem. Thermodyn.</i> 1988 , <i>20</i> , 1397–1409 (propene).	
76-dou/har	propene). Douslin, D. R; Harrison, R. H. <i>J. Chem. Thermodyn.</i> 1976 , <i>8</i> , 301–330 (ethene).	88-jac/jah	Jacobsen, R. T.; Jahangiri, M.; Stewart, R. B.; McCarty, R. D.; Levelt Sengers, J. M. H.; White, H. J., Jr.; Sengers, J. V.; Olchowy, G. A. <i>Ethylene</i>	
76-tra/was	Trappeniers, N. J.; Wassenaar, T.; Wolkers, G. J. <i>Physica</i> 1976 , <i>82A</i> , 305–311 (ethene).		(<i>Ethene</i>); 1UPAC International Thermodynamic Tables of the Fluid State. Vol. 10; Blackwell: Ox- ford, U.K. 1988	
77-goo	Goodwin, R. D. Private communication to Jahangiri <i>et al.</i> [86-jah/jac], 1977 (ethene).	90-ohg/ume	Ohgaki, K.; Umezono, S.; Katayama, T. J. Supercrit. Fluids 1990 3 78–84 (propere)	
77-has/lev	Hastings, J. R.; Levelt Sengers, J. M. H. Proceed- ings of the Seventh Symposium on Thermophysical Properties; Cezairliyan, A., Ed.; ASME: Fairfield, NJ, 1977; pp 794–806 (ethene).	90-smi/neg	Smith, R. L., Jr.; Negishi, E.; Arai, K.; Saito, S. <i>J. Chem. Eng. Jpn.</i> 1990 , <i>23</i> , 99–102 (oct-1-ene, terpenes).	
78-juz/sif	Juza, J.; Sifner, O.; Hoffer, V. <i>Acta Technica CSAV</i> 1978 , <i>23</i> , 425–445 (propene).	90-tej/ans	Teja, A. S.; Anselme, M. J. <i>AIChE Symp. Ser.</i> 1990 , <i>86</i> (No. 279), 122–127 (cyclopentene).	
80-amb	Ambrose, D. Vapour-Liquid Critical Properties; NPL Report Chem. No. 107; U.K. National Physical	90-tej/ros	Teja, A. S.; Rosenthal, D. J. <i>AIChE Symp. Ser.</i> 1990 , <i>86</i> (No. 279), 133–137 (cyclopentene).	
	Laboratory, Division of Chemical Standards: Ted- dington, U.K., 1975; final revision 1980 (review).	91-gud/ros	Gude, M. T.; Rosenthal, D. J.; Teja, A. S. Fluid Phase Equilib. 1991, 70, $55-64$ (C ₅ to C ₁₀ and C ₁₂	
80-ang/arm	Angus, S.; Armstrong, B.; de Reuck, K. M. <i>Propylene</i> (<i>propene</i>); IUPAC International Thermodynamic Tables of the Fluid State, Vol. 7; Pergamon Press: Oxford, U.K., 1980.	91-ma/ma	 alk-1-enes). Ma, P.; Ma, Y.; Zhang, J. Giaoxiao Huaxue Gong- cheng Xuebao [J. Chem. Eng. Chin. Univ.] 1991, 5 (No. 3), 175-181 (pent-1-ene, hex-1-ene, 3-methyl- 	
80-has/lev	Hastings, J. R.; Levelt Sengers, J. M. H.; Balfour, F. W. <i>J. Chem. Thermodyn.</i> 1980 , <i>12</i> , 1009–1045 (ethene).	93-ste/chi	but-1-ene). Steele, W. V.; Chirico, R. D. J. Phys. Chem. Ref. Data 1993, 22, 377-430.	
80-tho/zan	Thomas, W.; Zander, M. <i>Int. J. Thermophys.</i> 1980 , <i>1</i> , 383–396 (ethene).	94-gud/tej	Gude, M. T.; Teja, A. S. <i>AIChE Symp. Ser.</i> 1994 , <i>90</i> (No. 298). 14–22 (hex-1-ene. dec-1-ene).	
81-mcc/jac	McCarty, R. D.; Jacobsen, R. T. NBS Tech. Note 1981, No. 1045 (ethene).	95-amb/tso	Ambrose, D.; Tsonopoulos, C. J. Chem. Eng. Data 1995. 40, 531-546.	
81-syc/vas	Sychev, V. V.; Vasserman, A. A.; Golovsky, E. A.; Kozlov, A. D.; Spiridonov, G. A.; Tsimarny, V. A. <i>Thermodynamic Properties of Ethylene</i> ; Hemi- sphere: Washington, DC, 1987 (originally published in Moscow 1981).	95-amb/you	Ambrose, D.; Young, C. L. <i>J. Chem. Eng. Data</i> 1995 , 40, 345–357.	
		95-ste	Steele, W. V. Private communication, 1995 (but-1-yne).	
82-you	Younglove, B. A. J. Phys. Chem. Ref. Data 1982, 11, Suppl. No. 1 (ethene).	95-wil/wil	Wilson, L. C.; Wilding, W. V.; Wilson, H. L.; Wilson, G. M. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 765–768	
83-neh/hal	Nehzat, M. S.; Hall, K. R.: Eubank, P. T. <i>J. Chem.</i> <i>Eng. Data</i> 1983 , <i>28</i> , 205–210 (ethene).	96-amb/you	(propene). Ambrose, D.; Young, C. L. <i>J. Chem. Eng. Data</i> 1996 ,	
83-wol/kay	Wolfe, D.; Kay, W. B.; Teja, A. S. <i>J. Chem. Eng.</i> <i>Data</i> 1983 , <i>28</i> , 319–322 (pent-1-ene).		41, 154.	
84-jah	Jahangiri, M. Ph.D. Thesis, University of Idaho, 1984 (ethene).	Received for review August 8, 1995. Accepted May 1, 1996.		
85-bru	Brunner, E. J. Chem. Thermodyn. 1985, 17, 871–	JE9501999		

Brunner, E. J. Chem. Thermodyn. 1985, 17, 871–885 (ethene).

Jahangiri, M.; Jacobsen, R. T.; Stewart, R. B.; McCarty, R. D. *J. Phys. Chem. Ref. Data* **1986**, *15*, 86-jah/jac

 $^{\otimes}$ Abstract published in Advance ACS Abstracts, June 15, 1996.